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THEORY OF STABILITY OF THIN ELASTIC HETEROGENEOQUS
ANISOTROPIC PLATES OF VARIABLE RIGIDITY

P. G. Shulezhko

ABSTRACT. This article presents an expression for the total

_ potential energy, the differential equation of the elastic

~ surface of a plate, and the boundary condltlons for aniso-

tropic heterogeneous plates with variable ridigity, assuming
that the middle surface of the plate is simultaneously the
surface of both elastic and geometric symmetry. It is shown
that Kirchhoff's boundary conditions for the bending of plates
cannot always be extended to the buckling of plates.

An ever increasing number ¢f scientific works are presently being devoted /139%

to the question of studying the strain and stress of both homogeneous and heter-
ogeneous anisotropic bodies.

S. G. Mikhlin [1], S. G. Lekhnitskiy [2] and H. M. Savin [3] have accom-
plished significant work in this direction. These authors were the first to
formulate and solve several extremely important fundamental questions regarding
the plane theory of elasticity of anisotropic bodies.

Some particular cases of anisotropy were considered by Saint-Venant [4],
Voigt [5], Somigliana [6], M. Huber [7], Ya. I. Sekerzh-Zen'kovich [8], L. I.
Balabukh' [9], G. G. Rostovtsev [10], S. V. Serensen [11], and others.

Saint-Yenant, Voigt, and Somigliana were concerned with the study of the
state of stress of an anisotropic body having the shape of a long cylinder.

M. T. Huber examined the lateral bending of orthotropic plates.

Ya. I. Sekerzh-Zen'kovichand L. I. Balabukh studied the buckling of plywood
plates.

G. G. Rostovtsev devoted his article to the question of the reduced width
of an orthotropic plate.

S. V. Serensen, in his course on the theory of elasticity, derives a funda-
mental equation of the plane problem for an orthotropic medium and gives the so-
lution for a case of the bending of plane beams, and also discusses the works of
several other authors devoted to questions concerning the theory of elasticity
of anisotropic bodies.

This article considers the question of the stability of anisotropic

*Numbers in the mafgin'ihdiéétéEpaginétion in the foreign text.
N.B.: Commas should be interpreted as decimal points in all material that
has been reproduced directly from the original foreign document.
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heterogeneous thin plates of variable rigidity with a middle surface that is si-
multaneously the plane of elastic and geometric symmetry.

The article gives the derivation of a Brian-Timoshenko equation, an expres-
sion for the total potential energy, and also a differential equation for the
elastic surface of a plate and boundary conditions.

As far as we know, neither the Brian-Timoshenko equation, the expression of
total potential energy, nor the differential equation of the elastic surface of
an anisotropic plate of variable rigidity are encountered in the literature, not
to speak of the boundary conditions, which have not been derived for the case of
buckling even for an isotropic homogeneous plate of constant rigidity. The boun-

dary conditions derived by Kirchhoff [12] for the particular case of loading of/140

a plate that is under conditions of lateral bending have always been automati-
cally extended to the case of buckling. As we will see below, these boundary
conditions cannot always be applied to the case of buckling.

1. Basic Premises and Hypotheses

Let us imagine a plate whose lateral surface is formed by a cylinder f(x,y)=
= C, while its upper and lower surfaces are renresented by the equation

o= (=D (zy)  (k=1,2). 1)

Let us further assume that the plate is thin and has surfaces of elastic
and geometric symmetry.

We shall take the middle surface of the plate as the plane xy.

The condition of geometric symmetry has the following form:

R (2)
hy(z,y)=h.(z,9) .

The condition of elastic symmetry in the case under consideration will be
[13]:

I

GGGy = 0y = 0=, =0, | 3
au“au“ 16 7 Y25 T Mg T Mas u"’.‘u"“ ’

where a (x,y) are the coeffecients of elasticity of the given plate material.

Let us assume that the known hypotheses [13, 14, 15] that are used when de-
riving the equations of equilibrium of thin isotropic homogeneous plates of con-
stant rigidity can be extended also to thin anisotropic heterogeneous plates of
variable rigidity, the middle surface of which is simultaneously the surface of
elastic and geometric symmetry (under the condition that the upper and lower
surfaces of the plate are smooth surfaces).
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2. Brian-Timoshenko Equation

Let us consider a plate that is in a plane state of stress under the action
of forces parallel to its plane.

1f the forces acting on the plate are essentially compressive, the plate
may be in one of two states of stress: plane, when it has not yet been de-
flected, but is being deformed in its plane; and deflected, when, in addition to
deformation in its plane, it is also being bent.

The work of the external forces in the first state, which is equal to the
work of the internal stresses, can be represented in the following form [15, 16,
17]: o .

A1=SS[ laz+T,ayTS(‘9“+ )]dxdy, | ()

Where Al is the work of the external forces in the first state of the plate; u

and v are displacements of points of the middle surface of the plate in the di-
rection of the & and y axes; Tl and T2 are the forces applied to a unit length

and extending the plate in the direction of the x and Yy axes; and S is a tangen-
tial force, which is also applied to a unit length and lies in the plane of the
plate.

The work of the internal forces in the second state of the plate will con-/141
sist of two parts [15, 16]: the work of the longitudinal forces with plate dis-
tortion taken into account

JIE SONI s liiylen ©

and the work of plate bending

1 Pt otw
—1 SS{u‘d v M,d Y 2117,};0;} dzdy, | (6)

[

where My M, and H are the elastic moments applied to a unit length of the plate,

and which have the following form for an anisotropic heterogeneous plate of vari-
able rigidity [18]:

T Ee awa o
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T e = - - L - - - (7)

.

3

J(z,y)=gz’d:z,

=h
where aik (x,y) are the coefficients of elasticity of the given material, and
represented in terms of the coefficients given above by means of the formula [18]

-

iy — Gia Ok (8)

Q33

an(z,9) =

The coefficients aik (x,y), in turn, can be represented in terms of the

following "technical" coefficients, which are more familiar to us:

, L ' 3,
alx;:“K—(ET(j‘gaz’)a <E +53> K I.JI }.
1/ v 17 1 3,
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where

et () + ().

El and E2 are Young's moduli for extension (compression) in the direction of the
x and y axes; v, and v, are Poisson's ratios which characterize transverse com-~

pression of the material upon extension along the x and y axes; G is the shear
modulus for planes parallel to the xy plane; 81 and 82 are coefficients which /142

characterize elongation due to the effect of tangential stress Xy, or, expressed

in different terms, shear due to normal stresses Xx and Y .

It follows from the relationship a., = % ; that
1k 7
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For an isotropic homogeneous plate of constant rigidity, M., M, and H, as
is known, have the following form: "2

M=—D [+ 57 ]
M= —D[Fnv ] (9)

= —D(i—v) aa':;

where
Tt -t

is the cylimdrical rigidity of the plate.

The condition of equilibrium of the plate in the second state, obviously,
will have the following form:

A= [ 2 G ) en (B3 () ]
- +S[g: ' ay+azay}}d”dy‘“gg {Ml g::'*"M'ayt '*‘ZHazay}d"dy’

where A2 is the work of the external forces in the second state.

In the theory of buckling, we are interested in the equation which corres-
ponds to the moment of transition of the plate from the first state to the sec-
ond. This transition of the first state to the second evidently can be accom-
plished at the moment that the forces acting in the plane of the plate have ex-
ceeded a certain limit, albeit by a small quantity.

We shall call the system of forces that correspends to this limit the crit-
ical system, and we shall call the state of the plate that corresponds to this
system of forces the critical state.

At the moment of the critical state (at the boumndary of stability) the
plate can assume both a plane and a deflected shape, i.e., both the first and
the second state of the plate is equally probable. At that moment, the work of
the external forces of both the first and the second state will be equal to
each other [17, 19]. All terms that contain u and v in this case will cancel
out, and we shall obtain the sought Brian-Timoshenko equation:
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or, replacing the values of M,, ¥ 2 and H in equation (11) with their expressions/143
(7), we finally obtain:

_;'SS{J(x,y)[ ”3:+ "oy L ai‘;y] 5;-'*‘
9w ]aw

+ G, y)[ o e 2o (12)

+2J(z,y) [ .xaz. -+ .,3;" +2'a..f7"§;, ]—,;%—f,"g} dzdy+
TG Y sk a0,

If, however, we replace the values of Ml’ M2 and H in equation (11) by their

common expressions (9), we shall obtain the well-known Brian-Timoshenko equation
[16].

3. Stable, Unstable, and Neutral Equilibrium .

Both equation (11) and (12) are the only necessary condition of equilibrium.
The necessary and sufficient condition of an elastic system whose forces have a
potential, as we know, is that the potential energy in the equilibrium position
have a stationary value, i.e.,

o 13
$I=0, (13)

or, expressed in another manner,

an_g (L_123 Con), (14)
Bu

where T is the total potential energy of the system and q9; is a generalized
coordinate.

The equilibrium of a material system, as we know, can be stable, unstable,
o, neutral. If the potential energy has a minimum, i.e.,

15
Pl >0, (13

the equilibrium will be stable.
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It is has a maximum, i.e., VII<:6 (16)

the equilibrium will be unstable; and if it has neither a minimum nor a maximum,
i.e.,

$M=0and $[1=0, (17)
the equilibrium will be neutral.

Neutral equilibrium determined by equations (17) will obviously correspond
to the critical state of equilibrium.

4. Expression of the Total Potential Energy of a Plate /144

To find the critical state, it is obviously necessary to derive an expres-—
sion for the total potential energy. In our case, the left-hand side of equa-
tion (12) may be considered as the total potentlal energy of a plate subject to
buckling.

Indeed, the first double integral in equation (12) is none other than the
work of the internal bending forces Ai’ while the second, if it is read with a
minus sign, is the work of the external forces Ae (boundary and volume forces).

Consequently, the total potential energy for the case of buckling can be written
in the following form:

\ M=4,- 4, (18)

or

SSJ(x y) {{ “az-’*‘ 313;54‘2 .,(;Z::J] g;‘:’+
.+[ "8x’+ "39:’_*_201”5(2_1%]%?_*— .

at at a’w
+2[ lla‘f—{— l!a‘:—}_za'.azay axay}dxdj+
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5. Differential Equation of the Elastic Surface of a Plate
and Boundary Conditions

We shall use condition (13) to obtain the differential equation and the
boundary conditions.

By inserting the value of I from (19) into (13) and performing variation
and some transformations, we obtain:

T g e e ey e e
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(20)
—Sds{'Qaw_M""‘”} VS (V) &w (s.) »
where
Q= {(aM‘ H) cos (n, z)+ (811, gg) cos (n,y) —
'—'&[(Mx _'M:) cos (nvz) cos (n, y)_ H (COS' (n)x) ——cos’_(n, y)}]+ - . (21)
dew
+ [T,%”+Sgi;] cos (n,z)+ [T,%"-{-S(—,’f;] cos (n.,y)} ,
1 AI Al cos’ (n z)4—211cos(n x)cos(n y)4—ﬁ[ co»’(n y), - (22)
4 N=(M,— M,)oos (n,z)cos (n,y) — H [oos' (r, z) — cos’ (n,y)] ,
?
] in which Z S (N) denotes the sum of the discontinuities which the function I 178

i=1
undergoes at the corner points s; of the contour (n,x), and (n,y) are the angles

between the external direction of the normal to the contour and the z and Yy ax-—
g es; the quantities M 1 M2 and H have their previous values (7).

From (20), with the usual considerations, we obtain an Euler-Lagrange equa-
tion of our variation problem:

: Bty o B O | el dw o Ow (23)
3 az=+ 6:0y+ ,+6.r[ ‘0:+Say]+¢9y[T’dy +5; ] 0

or, by substituting the values of ¥ M2 and H in (23) by their expressions (7),

l’
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where X and Y are the components of the resultant vector of the volume forces

»




applied to a unit area of the plate.

Equation (23) also can be obtained geometrically
after considering the equilibrium of a deformed element of the plate.

The static equation ZZ = 0 also gives the sought equation (23)%,

The equation obtained (24) makes it possible to write differential equa-
tions also for plates with other values of aik(x,y) and J(x,y).

We shall cite several particular cases of differential equation (24).

1. To obtain a differential equation for an orthogonal anisotropic plate
of variable thickness, we must place the following in equation (24):

&, =%g= Xye -+ CIPR)

which is equivalent to

Bn=3:=0’
The remaining coefficients will then take on the following form:
E, __wE . _¢
&, = "":1": ’ a“——-.:vl\'. ’ . oo G,
wE. K =_‘_'_‘“1Vz‘
a""l—-vlv, ! a“-l——v,v?’ X E,E.G
- N, — -
é .
] 2. Equation (24) for the case of a homogeneous orthogonal anisotropic /146
plate of constant thickness, takes on the form:
FERE VoL LY e Ik o
Erratey 922 dy? + ayt oz 16z iy 3y 3 5y ar | °
; where
] S
‘ __EJ
H A= 1 — vy,
B EdJ
1— vy,
_wEJ | wEJ
2C~‘1—vlv' B vlv,+4GJ'
) i _
3 *Equation (23), and also expressions (21) and (22), obviously are invari-
* ants both with respect to the structure of the plate material and also with
- regard to the variation of its rigidity.
9
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3. In an isotropic and homogeneous medium, but with variable thickness,
equation (24) assumes the following form:

., [0Ddw ., #D Fw | DIw
A(DA“’)'““_" [6.’:’ dr ~“Gzoy oz ay 557:'297;?]’
, (25)

=u [nErsE |+ o [nE ]

where D = EJ/1 ~ v? is the cylindrical rigidity of the plate.

4. When D = const, equation (25) becomes a differential equation for an
isotropic plate with constant thickness:

DA’A“"i[ S ay]+ay[ 'ay+Saz];» (26)

' tﬁisyequation was first derived by Reissner [15]. If we state the following in

equation (26),

T,==c0nst, T, -_constand.>-—conat ,

X

we will oBtain a Saint-Venant equation [20].

We shall obtain the boundary conditions for the plate by considering the
contour integral and the sum in the equation (20). 1If the edge of the plate is
perfectly free, then, by using the well-known reasoning, we obtain the follow-
ing:

Q=0, M=0, S8y =0

i=1

(27)

whefe @, M and N have their former values (21), (22), (22a).

Thus, for example, for the free side y = b of a rectangular plate, the - /147

boundary conditions (27) assume the following form:

[ {J (= 3”( G o e T i'azayyf‘L
+;; {J(:’:’y) <“ﬂ %v+a" %:W ;s ai%)} T‘t?y ]v—b_o.’ | (28)
[ Hg’:‘*‘ %11 5y a2 "ai’awy] =05

10




x=0,y=>band x =a, y =Db at the corners of the plate:

7 Mw AW o —0. .
Si (""J(z’y) [adan:'_%'auay +2 uo;ay}>°w(sl) {28")

The boundary conditions for an isotropic homogeneous plate of constan:z
rigidity will be obtained if, instead of Mi, M2 and H in (27), we substituze

their common expressions (9). In particular, for the free side y = b of a rec-
tangular plate, the boundary conditions take on the following form:

[ +(2 way) T'ay $3],=0,

Pw Ol R .
[bFJ’”a?}qu’ o
£=0,y=bandzx =a, y=>b at the corners of the plate:

«‘ ( a’“’ > 6“’ = | (283.')

The usual Kirchhoff boundary conditions encountered in all courses on the
theory of elasticity will be obtained if we place (TZ)y=b = (S)y=b =0 in (28a),

{28a)

] which caorresponds to the case of the absence of external forces on the contour.

But since cases are encountered in the literature where Kirchhoff's boundary

conditions are extended to individual particular problems and to loaded sides

; of a plate, which naturally leads to errors, we then must consider this ques-

4 tion in greater detail and cite an example. .
As an example, let us consider the stability of the rod shown in Figure 1

‘in two variations: with the boundary conditions given in this article, and

with Kirchhoff's boundary conditions.

The differential equation of the elastic line of the rod will be obtained
as a particular case from (24):

Yy d . 29
L] g e (B ) gm0
u /T 7 - _
; , The boundary conditions for the free loaded end of the /14n
1 K rod will be obtained as a particular case from (28a):
g : ) iy o i I 30
i . - VUl " [ ay° +T'dy]u=b 07- ' [dy,]Fb-—O. (30)
Figuré;l.
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Kirchhoff's boundary conditions for the same free end of the rod have the
following form:

| [%‘;]‘m‘fo’ [j_;ij]v=b=o. (31)

The boundary conditions for the fastened end, which are given here, and
Kirchhoff's boundary conditions, coincide:

[#ly==0, [gi;]vab=()' (32

Now, solving the pfoblem for a rod under boundary conditions (30) and (32)
and boundary conditions (31) and (32), we obtain the following transcendental
equation for determining the critical force in the first case:

Eﬁi” (33)

cosAb=0 ()\=
EJ

and the following transcendental equation for the second case:

sin’)\b—i—cps’ilg;d . (339

Equation (33%), as we know, does not generally have a root, and consequent-—
ly, we do not obtain the critical force*.

\
This example indicates that Kirchhoff's boundary conditions, which were
derived for bending, cannot always be extended to buckling.

Let us now consider other cases of boundary conditioms.
If the edge of a plate is freely fastened, dw = 0 and Gw(si) = 0, and con-
sequently, by applying well-known reasoning, we obtain the following:

w=0, M, cos*(n,z)+2H cos(n,z)eos (n,y) 4 M, cos* (n,y)=0. (34)

If the edge of the plate is rigidly fastened, i.e., it cannot be turned
or displaced, the boundary conditions, as can be easily comprehended, will have
the following form:

w=0, ¥=0. | (35)

*A similar example could be cited also for a plate, but the incorrectness
of applying Kirchhoff's conditions in that case is not as clear to detect as in°~

_this case.

12




The boundary conditions could be derived also for the case of elastic
fastening of the edge of a plate, and also for the case of support of the edge
of a plate on an elastic contour, but in the presence of the fundamental bound-/149
ary conditions given above, a description of these boundary conditions is not
difficult; therefore, we shall not dwell on them.
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